Space
Astronomers Focus on 2-Million-Light Year Afterburner
Brooke Miller
First Posted: Oct 22, 2012 12:09 PM EDT
First Posted: Oct 22, 2012 12:09 PM EDT
The researchers studied a two million light years from the centre of a distant galaxy. It appears that the supersonic jet material is very similar to the afterburner flow of fighter jet.
This study depicts the galaxy-scale jet to have bright and dark regions, similar to the phenomenon in an afterburner exhaust called 'shock diamonds'.
But the previously studied jet reveals that regularly spaced areas that are brighter than the rest of the jet in a pattern that echoes the way the afterburner from a jet engine has brighter diamond-shaped areas in its general glow.
"One intriguing possibility is that the pattern we see in this cosmic jet is produced in the same way as the pattern in the exhaust from fighter jet engines," said Dr Leith Godfrey, from the Curtin University node of The International Centre for Radio Astronomy Research.
According to Dr Godfrey, there are certain elements that are unknown especially when the material falls onto a supermasssive black hole at the center of a galaxy.
"Massive jets like this one have been studied for decades, since the beginning of radio astronomy, but we still don't understand exactly how they are produced or what they're made of," he said.
"If the brighter patches are caused by the same process in astronomical jets as they are in earthly jet engines, then the distance between them can give us important information about the power of the jet and the density of the surrounding space."
The jet Dr godfrey studied are the largest objects in the Universe. It is believed to be100 times larger than the Milky Way.
"If we want to understand how galaxies form and grow, we need to understand these jets. They are extremely powerful and are believed to stop stars forming in their parent galaxy, limiting how big the galaxies can grow and effecting how the Universe looks today," he said.
"This new image of the jet shows detail we've never seen before and the pattern we revealed provides a clue to how jets like this one work," said Dr Jim Lovell, a co-author from the University of Tasmania.
"This particular jet emits a lot of X-rays, which is hard to explain with our current models. Our new find is a step forward in understanding how these giant objects emit so much X-Ray radiation, and indirectly, will help us understand how the jet came to be."
The image had been taken using the CSIRO Australia Telescope Compact Array radio telescope in New South Wales.
The study was published in the Astrophyscial Journal Letters.
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone