Space
Largest Binary Star in the Universe Identified
Mark Hoffman
First Posted: Apr 17, 2013 11:07 PM EDT
Possibly the most massive binary star ever discovered, astronomers have observed an exemplary that potentially weighed 300 to 400 solar masses at birth. The present day total mass of the two stars is between 200 and 300 times that of the Sun, depending on its evolutionary stage, which would still make it the biggest binary star known to date.
The massive binary star R144 can be found in an outer area of the star-forming region 30 Doradus in the Large Magellanic Cloud. A number of particularly bright stars can be found in the center of that region with a characteristic pattern of spectral lines. The masses of these so-called Wolf-Rayet stars are up to 250 times the mass of the Sun. R144 is the visually brightest light source of this type in the star-forming region 30 Doradus and radiates strongly in X-rays. This was an indication that R144 is a binary star. This presumption has now been confirmed thanks to the discovery of periodic (orbital) changes in the spectrum.
This was revealed in a study, led by astronomer Hugues Sana of the University of Amsterdam and bachelor student Tayo van Boeckel, published in Monthly Notices of the Royal Astronomical Society Letters.
Spectra of R144 have been obtained with the X-shooter spectrograph on the Very Large Telescope of the European Southern Observatory. X-shooter is one of the most sensitive spectrographs on Earth and can observe light from the near-ultraviolet to the near-infrared in one shot. "The identification of this candidate would have been a great challenge without X-shooter. This spectrograph makes observations a lot easier and much more efficient, especially because less observation time is required to cover a large spectral range," explains Sana.
"It is a mystery how extremely massive stars form," explains co-author Frank Tramper (University of Amsterdam). "According to the most widely accepted theories, stars of hundreds of solar masses can only form in massive star clusters. The fact that R144 lies far out from the central star cluster in 30 Doradus is possibly an indication that these systems can form in isolation."
See Now:
NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
©2024 ScienceWorldReport.com All rights reserved. Do not reproduce without permission. The window to the world of science news.
More on SCIENCEwr
First Posted: Apr 17, 2013 11:07 PM EDT
Possibly the most massive binary star ever discovered, astronomers have observed an exemplary that potentially weighed 300 to 400 solar masses at birth. The present day total mass of the two stars is between 200 and 300 times that of the Sun, depending on its evolutionary stage, which would still make it the biggest binary star known to date.
The massive binary star R144 can be found in an outer area of the star-forming region 30 Doradus in the Large Magellanic Cloud. A number of particularly bright stars can be found in the center of that region with a characteristic pattern of spectral lines. The masses of these so-called Wolf-Rayet stars are up to 250 times the mass of the Sun. R144 is the visually brightest light source of this type in the star-forming region 30 Doradus and radiates strongly in X-rays. This was an indication that R144 is a binary star. This presumption has now been confirmed thanks to the discovery of periodic (orbital) changes in the spectrum.
Spectra of R144 have been obtained with the X-shooter spectrograph on the Very Large Telescope of the European Southern Observatory. X-shooter is one of the most sensitive spectrographs on Earth and can observe light from the near-ultraviolet to the near-infrared in one shot. "The identification of this candidate would have been a great challenge without X-shooter. This spectrograph makes observations a lot easier and much more efficient, especially because less observation time is required to cover a large spectral range," explains Sana.
"It is a mystery how extremely massive stars form," explains co-author Frank Tramper (University of Amsterdam). "According to the most widely accepted theories, stars of hundreds of solar masses can only form in massive star clusters. The fact that R144 lies far out from the central star cluster in 30 Doradus is possibly an indication that these systems can form in isolation."
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone