Physics
Invisibility Cloak Scientists Demonstrate Same Effect For Heat
Mark Hoffman
First Posted: May 09, 2013 08:22 PM EDT
Light and sound waves can be passed around objects, making them invisible since there is no shadow behind the object, by means of special meta-materials. Karlsruhe Institute of Technology researchers, who previously developed the world's first three-dimensional invisibility cloak for visible light, now succeeded in demonstrating that these special materials can also be used to specifically influence the propagation of heat. A structured plate of copper and silicon was shown to conduct heat around a central area without the edge being affected.
"For the thermal invisibility cloak, both materials have to be arranged smartly," explains Robert Schittny from KIT, the first author of the study which was presented in the Physical Review Letters journal.Copper is a good heat conductor, while the silicon material used, called PDMS, is a bad conductor. "By providing a thin copper plate with annular silicon structures, we produce a material that conducts heat in various directions at variable speeds. In this way, the time needed for passing around a hidden object can be compensated."
If a simple, solid metal plate is heated at the left edge, heat migrates uniformly to the right side. The temperature of the plate decreases from the left to the right. Exactly the same behavior is exhibited by the new meta-material consisting of copper and silicon outside of the annular structure. No heat penetrates inside. Outside, there is no indication of what happens inside.
"These results impressively reveal that optics transformation methods can be transferred to the highly different area of thermodynamics," says . While optics and acoustics are based on the propagation of waves, heat is a measure of the unordered movement of atoms. Still, basic mathematical descriptions can be used to calculate the structures required to have the effect of an invisibility cloak. With the methods of so-called transformation optics, a distortion of the describing coordinate system is calculated. Arithmetically speaking, an extended object disappears in an infinitely small point. This virtual distortion can be mapped to a real meta-material structure that passes incident light or in this case heat around the object to be hidden, as if it was not even existing.
"I hope that our work will be the basis of many further developments in the field of thermodynamic meta-materials," Martin Wegener, Head of the Institute of Applied Physics of KIT, says. Thermal invisibility cloaks are a rather new field in fundamental research. In the long term, they might be applied in areas needing effective heat management, such as in microchips, electric components, or machines."
----
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.
See Now:
NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
©2024 ScienceWorldReport.com All rights reserved. Do not reproduce without permission. The window to the world of science news.
More on SCIENCEwr
First Posted: May 09, 2013 08:22 PM EDT
Light and sound waves can be passed around objects, making them invisible since there is no shadow behind the object, by means of special meta-materials. Karlsruhe Institute of Technology researchers, who previously developed the world's first three-dimensional invisibility cloak for visible light, now succeeded in demonstrating that these special materials can also be used to specifically influence the propagation of heat. A structured plate of copper and silicon was shown to conduct heat around a central area without the edge being affected.
If a simple, solid metal plate is heated at the left edge, heat migrates uniformly to the right side. The temperature of the plate decreases from the left to the right. Exactly the same behavior is exhibited by the new meta-material consisting of copper and silicon outside of the annular structure. No heat penetrates inside. Outside, there is no indication of what happens inside.
"These results impressively reveal that optics transformation methods can be transferred to the highly different area of thermodynamics," says . While optics and acoustics are based on the propagation of waves, heat is a measure of the unordered movement of atoms. Still, basic mathematical descriptions can be used to calculate the structures required to have the effect of an invisibility cloak. With the methods of so-called transformation optics, a distortion of the describing coordinate system is calculated. Arithmetically speaking, an extended object disappears in an infinitely small point. This virtual distortion can be mapped to a real meta-material structure that passes incident light or in this case heat around the object to be hidden, as if it was not even existing.
"I hope that our work will be the basis of many further developments in the field of thermodynamic meta-materials," Martin Wegener, Head of the Institute of Applied Physics of KIT, says. Thermal invisibility cloaks are a rather new field in fundamental research. In the long term, they might be applied in areas needing effective heat management, such as in microchips, electric components, or machines."
----
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone