First Computer-Designed Superconducting Material Synthesized
The first stable superconductor designed entirely on the computer has been successfully synthesized, according to results published this week in the journal Physical Review Letters.
Aleksey Kolmogorov, assistant professor of physics at Binghamton University, proposed the new superconductor in Physical Review Letters in 2010 and then teamed up with European experimentalists to test the prediction.
The synthesized material — a novel iron tetraboride compound — is made of two common elements, has a brand-new crystal structure and exhibits an unexpected type of superconductivity for a material that contains iron, just as predicted in the original computational study.
"Paradigm-shifting superconducting materials have so far been discovered experimentally, and oftentimes accidentally," Kolmogorov says.
Until now, theory has been used primarily to investigate superconducting mechanisms and, in rare cases, suggest ways that existing materials might be modified to become superconductors. But many proposed superconducting materials are not stable enough to form and those that do form are poor superconductors.
Superconductors, which conduct electric current without any resistance when cooled below a certain temperature, have many interesting applications. For instance, power lines made out of superconducting materials can significantly reduce the energy lost in transmission.
Several years ago, Kolmogorov, then at Oxford University, began studying boron-based materials, which have complex structures and a wide range of applications. He developed an automated computational tool to identify previously unknown stable crystal structures. His "evolutionary" algorithm emulates nature, meaning it favors more stable materials among thousands of possibilities.
The search revealed two promising compounds in a common iron-boron system, which came as a surprise. Moreover, a graduate student's calculations indicated that one of them should be a superconductor at an unusually high temperature of 15-20 Kelvin for the considered (so-called "conventional") type of superconductivity.
Months of double-checking confirmed the preliminary results on the stability and superconductivity of the compound. Still, the 2010 theoretical discovery was met with skepticism.
Natalia Dubrovinskaia and Leonid Dubrovinsky, professors at the University of Bayreuth in Germany, undertook a series of experiments and produced a very small quantity of iron tetraboride in the predicted crystal structure, leading to the latest article. Detailed measurements demonstrated the material's predicted superconducting property and, unexpectedly, its exceptional hardness.
"The discovery of this superhard superconductor demonstrates that new compounds can be brought into existence by revisiting seemingly well-studied systems," Kolmogorov says. Now that this material has been synthesized, it may be possible to modify it and raise the temperature at which it becomes a superconductor. -- Binghamton University
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
Join the Conversation