Predicting Disease Outbreaks in East Africa
Researchers are taking data from satellite observations and combining it with first-hand experience from health workers to make smart tools that can predict where outbreaks of diseases such as malaria might strike.
Malaria and other water-related diseases kill hundreds of thousands of people in Africa every year – most of them children.
That’s partly driven by changes in environmental conditions, including climate, which bring rains and floods that carry such diseases into previously unexposed populations with little immunity. It can result in more frequent, severe epidemics, with dire socioeconomic consequences.
Climate researchers, public health workers and environmental scientists came together as part of the EU-funded HEALTHY FUTURES project to work out how to improve prediction of future outbreaks of the water-related diseases malaria, Rift Valley fever and schistosomiasis.
Snail fever
The role of water in the spread of the three diseases is crucial. Scientists know that the likelihood of ‘vector-borne disease’ epidemics in tropical countries increases soon after seasons of good rainfall, when insects that can carry disease thrive in the heat and humidity.
But the links between the environment and such diseases are extremely complex and often under-explored. While scientists have detailed knowledge of the climatic triggers for specific diseases, it is not always clear why particular areas become vulnerable, particularly given changes in the environment. It can also be difficult to assess how far ahead outbreaks can be predicted.
Combining the data
To bridge this gap, the 16-member HEALTHY FUTURES consortium, coordinated by Trinity College in Dublin, is combining data from satellites with computer modelling tools, information from regional government health departments, and first-hand accounts from health workers in the field, and using the information to develop tools that can help predict outbreaks.
Crucially, the project relies on interested parties and those working in the region to identify what tools could be most useful in making decisions.
By the time it finishes at the end of 2014, it hopes to have developed and applied statistical and dynamic disease models, as well as provided high-resolution regional climate projections. In addition, the project plans to construct future disease risk and vulnerability maps – highlighting the areas that could face the most difficulty as a result of changes in the local environment. This will help inform health services as they decide what actions to take, and how best to use their often scarce resources. -- Source and © European Union
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
Join the Conversation