Latest Technology Allows Observing How Individual Atoms Vibrate Under Light
What was until now mostly described and known in theory and through experiments, can now be observed in great detail with the latest technologies: How atoms vibrate and change when hit with intense bursts of light.
The collaborative research, led at the Tyndall National Institute by Prof. Stephen Fahy, is currently using x-ray lasers to investigate how natural vibrations of molecules and solids are excited by intense bursts of light. The x-ray laser generates pulses so short that they can capture a snapshot of the moving atoms in less than a billionth of a billionth of a second, which enables researchers to better understand how individual atoms are affected when light is absorbed.
While current studies focus on movement of atoms in germanium, this is the first time that researchers have been able to look at any material in such detail. As the research progresses, it has the potential to revolutionise the speed and capacity of data transfer through optical fibres on the internet and even unlock how atom-level photosynthesis works, with the possibility for it to be replicated to increase energy storage capacity.
The research paper was co-authored by researchers from SLAC National Research Laboratory, Stanford University, University of Michigan, Oxford University, ETH Zurich, Lund University and the University of Duisburg-Essen under the direction of Prof. David Reis, Stanford University Department of Applied Physics, who was also resident in Tyndall from April to June this year under the SFI Walton Visiting Fellow programme.
A 5-year programme of research on this topic at the Tyndall National Institute is currently funded by Science Foundation Ireland.
Reference:
M. Trigo, et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 2013; 9 (12): 790 DOI: 10.1038/nphys2788
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
Join the Conversation