Catalysts Team Up With Textiles
New technological achievements will make it much easier and efficient to produce active pharmaceutical substances and chemical compounds in the future. One step towards this was now achieved by an international team working with chemists from the Max-Planck-Institut für Kohlenforschung in Mülheim who found a simple way to immobilise various catalysts on nylon.
Catalysts mediate between the reagents in a chemical reaction and control the process leading to the desired end product. When textile material is used as a support for the chemical auxiliaries, the reaction can proceed on a large surface thereby increasing its efficiency. One of the catalysts that the researchers used in this way plays an important role in the synthesis of a pharmaceutical agent which could only be used previously in dissolved form, making the production process very complicated and expensive. Immobilising this catalyst on fabric simplifies production considerably. This process may be expected to yield similar advantages for other chemical processes.
Functional textiles are usually understood as the textiles used to make windproof jackets, breathable footwear and particularly effective thermal underwear. However, the term could soon refer to something else – textiles which are “functionalised” with the help of organic catalysts. Working in collaboration with scientists from the Deutsches Textilforschungszentrum in Krefeld and Sungkyunkwan University in Suwon, Korea, researchers at the Max-Planck-Institut für Kohlenforschung in Mülheim have developed a process for immobilising different organic catalysts on textiles with the help of ultraviolet light.
Up to now, science has focused more on the macroscopic functionality of textiles, for example clothing, explains Ji-Woong Lee who recently completed his doctorate at the Max-Planck-Institut für Kohlenforschung under the supervision of Benjamin List, head of the Institute’s Homogenous Catalysis Group. “As opposed to this, our method can give simple textiles microscopic functionalities,” explains the Korean scientist.
Excellent yields, little wear and tear
The catalysts, which were practically interwoven with the fabric, displayed all of the characteristics that the chemists expect from such a system: the result of the chemical reactions which the scientists undertook with the catalyst-loaded nylon strips is impressive. All three catalysts converted around 90 percent of the source materials to the desired products. Ji-Woong Lee carried out several hundred test-runs and observed that the catalysts relinquished little of their functionality.
A large surface makes chemical reactions more efficient
Compared with other ways of immobilising catalysts, “organotextile catalysis” has several advantages: in particular, it provides the reagents with a larger surface than other supports, for example plastic spheres or foils – the larger the surface, the more efficiently a reaction proceeds. Moreover, nylon is flexible and very inexpensive. Dry textiles loaded with catalysts are easy to transport, which means that it is simpler to meet the requirements for some chemical processes where it is practically impossible to set up sophisticated chemical systems. For example, organotextile catalysis could help in the treatment of water in locations where people are cut off from the water supply.
“Our method enables the low-cost production of long-term functionalised textiles without causing any pollution,” says Ji-Woong Lee. He is entirely convinced that the process can be applied in several scientific areas – and industrial processes. -- Max-Planck Gesellschaft, Munich
See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone
Join the Conversation